Elastic net with Monte Carlo sampling for data-based modeling in biopharmaceutical manufacturing facilities
نویسندگان
چکیده
Biopharmaceutical manufacturing involves multiple process steps that can be challenging to model. Oftentimes, operating conditions are studied in bench-scale experiments and then fixed to specific values during full-scale operations. This procedure limits the opportunity to tune process variables to correct for the effects of disturbances. Generating process models has the potential to increase the flexibility and controllability of the biomanufacturing processes. This article proposes a statistical modeling methodology to predict the outputs of biopharmaceutical operations. This methodology addresses two important ata-based modeling lastic net asso onte Carlo methods iopharmaceutical manufacturing egularization methods challenging characteristics typical of data collected in the biopharmaceutical industry: limited data availability and data heterogeneity. Motivated by the final aim of control, regularization methods, specifically the elastic net, are combined with sampling techniques similar to the bootstrap to develop mathematical models that use only a small number of input variables. This methodology is evaluated on an antibody manufacturing dataset.
منابع مشابه
Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملTolerance Analysis for Design of Multistage Manufacturing Processes Using Number-Theoretical Net Method (NT-net)
Recent developments in modeling stream of variation in multistage manufacturing system along with the urgent need for yield enhancement in the semiconductor industry has led to complex large scale simulation problems in design and performance prediction, thus challenging current Monte Carlo (MC) based simulation techniques. MC method prevails in statistical simulation approaches for multi-dimen...
متن کاملPopulation dynamic of Acipenser persicus by Monte Carlo simulation model and Bootstrap method in the southern Caspian Sea (Case study: Guilan province)
In this study population dynamic of Acipenser persicus with age structure model by Monte Carlo and Bootstrap approach was studied. Length frequency data a total of 4376 specimens collected from beach seine, fixed gill net and conservation force in coastal Guilan province during 2002 to 2012. Data imported to FiSAT II for length frequency analyze by ELEFAN 1. K, L∞ and t0 estimated 203, 0.08 and...
متن کاملVariable selection for varying coefficient models with the sparse regularization
Varying-coefficient models are useful tools for analyzing longitudinal data. They can effectively describe a relationship between predictors and responses repeatedly measured. We consider the problem of selecting variables in the varying-coefficient models via the adaptive elastic net regularization. Coefficients given as functions are expressed by basis expansions, and then parameters involved...
متن کاملProduction Throughput Modeling under Five Uncertain Variables Using Bayesian Inference
Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today’s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, dem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Chemical Engineering
دوره 80 شماره
صفحات -
تاریخ انتشار 2015